A v e o - S T TR T R TR o e o e T

VOL.7,NO. 1 J“U

i
:

e

JANUARY/MARCH 1984 OF THE HP INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA

OF THE HP INTERNATIONAL
USERS GROUP, INCORPORATED

J OF THE HP INTERNATIONAL
USERS GROUP, INCORPORATED

J OF THE HP INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP INTERNATIONAL

F

F

JURNA

F

USERS GROUP, INCORPORATED
OF THE HP INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP INTERNATIONAL

F

USERS GROUP, INCORPORATED
OF THE HP INTERNATIONAL

F

USERS GROUP, INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

UBLICATIONS COMMITTEE MEMBERS CONTENTS

Chairman Toward Better COBOL Programs:
Dr. John Ray A Structured Approach 2

College of Education David J. Greer

Department of Curriculum & Instruction
Suggestions for Implementing Hierarchical

University of Tennessee at Knoxhille
. ’,' > T -~ > 7 '_ N . .
Knoxville, Tennessee 37696-3400 11S A (Blll-Of—Matenals) Data Structure
Using IMAGE 12

Gary H. Johnson

Brown Data Processing i

9229 Ward Parkwayv Paul A. Knaplund
Kansas City, Missourt 64114 USA

Implementation of Control Structures in
Ragnar Nordberg

Department of Clinical Chemistrs k ORTRA‘N/:;()OO """""""""" 16
University of Gothenburg James P. Schwar

Sahlgren’s Hospital

S-41345 Gothenburg. Sweden MPE Disc Cache: In Perspective 21

Michael J. Modiz John R. Busch
Havssen Manutacturing Compan: o
Highway 42 North Alan J. Kondoff

Shebovgan, Wisconsin S3081 175 A —— R —

Marjorie K. Oughton

Supervisor of Dats Processing Technical Editor Editor
Adexandria Ciy Pobic Schoois Dr. John Ray Christine M. D()Iffi
201 Braddock Rosad

‘\lcx;mdzieh Nirgivge 22362 0wy Technical }.ditor’s Note

Jouglas Swallow A T

‘%“h”f“”:" SuRpigpe The Publications Committee s grateful tor the support the
POTN Calvet Stre s o (LG ship provided during 1983, Our goal is to pub-
Baltimore, Marsia 2278 s A lish i varets of articles from & cross section of the member-

ship. The more articles vow provide. the better vour Jowrnal

will be. Remember, we can only publish what vou write and
send to us. The very best articles are those which let your
colleagues know what you do with vour hardware and
software.

Again, thanks for making vour Journal better in 1983
and keep up the good work!

This publication is for the express purpose of disseminating information among menbers of the HP International Users Group. HP IUG and
the editorial staff are not responsible for the accuracy of rechnical material. Contributions from Hewleti- Packard personnel are welcome and
re not 1o be construed as official policy nor the position of the Hewleti-Packard Company.
‘J The editors of the Journal are interested in vour commenrs and suggestions, as well as contributions to future issues.
The information in this publication may be reproduced without the prior writien consent of HP UG, except where a copyright is
‘u/icalod, provided thar proper recognition is given 1o HP 1UG.

HP IUG, 2570 EI. CAMINO REAL WEST, FOURTH FLOOR, MOUNTAIN VIEW, CALIFORNIA 94040, (415) 941-9960

Of THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

JOURNAJ,

Toward Better COBOL Programs: A Structured Approach

David J. Greer

Robdle Consulting L.td.
Aldergrove, British Columbia
Canada

INTRODUCTION

In order to write better COBOL. programs, 1t is necessary 10
understand the concepts of structured programming. and
how these concepts relate to COBOL. This article takes a
break from the concrete level and explores the theoretical
environment in which COBOL works best. This environment
is the theory of “structured programming.”

Rather than paraphrase ideas that have already been
dated eloquently by others. this article will draw short guo-
tations from published sources. which are isted at the end ol
the article.

STRUCTURED PROGRAMMING

The software project had to be abandoned. and with it.
over thirty man-years of programming effort. "You-
know what went wrong”? You let vour programmers do
things you yoursclf do not understand.” How could
one person ever understand the whole of a modern
software product? (Dijkstra 1972)

Most of us are aware that a “software crisis” exists.
Hardware continues to improve by orders of magnitude, but
software improves only slightly. In fact, as the problems that
we attempt to tackle with computers increase to match the
capacity of the latest hardware. the software seems to get
WOrse.

The time required to develop programs is a massive
headache to managers in data processing. Projects are usually
behind schedule, even when the scheduled completion date
seems ridiculously generous. The delivered products are often
unsatisfactory to the user, either because they have bugs, or
because the user no longer needs what was originally
specified.

Programs are often completed containing serious logi-
cal bugs. Bugs are difficult to detect during final integration
and testing, and they can be costly to the installation if they
remain undetected. When they are finally detected during
production, bugs are costly to eliminate as well. One of the

urgent goals of the software industry must be the elimination
©1983 All rights reserved.

of logical bugs, preferably before they get into the programs,
At the same time, we have another important goal: taste
program development. Surprisingly. recent experience has
shown that software is one of the tew products where
increased quality and reliability are accompanicd by lowe:
development costs.

Fortunately for us, the last 15 vears have seena revolu
tion in the theory of programming: this revolution s calics
“structured programming” Ttmay sull be inoa state of rapi:
and explosive development, but certain fundapwnial truth-
about programming atc being recognized and aceepted i
the industry.

A study of program structure has revealed that pro- %
grams . . . can differ tremendousty in their intellectual g
manageability. A number ol rules have heen discov-
ered, violation of which will either seriously impair or
totally destroy the intellectual manageability of the
program . .. | now suggest that we confine ourselves to
the design and implementation of intellectually man-
ageable programs. (Ijkstra 1972)

The Fundamental Principle of Structured Program-
ming is that at all times and under all circumstances.
the programmer must keep the program within his
intellectual grasp. The standard and well known
methods for achieving this have been well documented
and can be bricily summarized as follows:

I. top-down design and construction

2. limited control structures

3. limited scope of data structures.
The bald truth is that natural language is ill-suited for
writing specifications. As a corollary to this theorem.
the most concise and intellectually manageable form
for the specification of an algorithm is the algorithm
itself. (Harkron 1977)

What are the prospects for writing intellectually
manageable programs in COBOL? The prospects are medic
cre. As will be demonstrated with examples, COBOL pn’
vides only some of the structure facilities that are expected ¢
a modern programming language. The mechanisms f(g

JOURNAJ,

OF THE HP 3000 INTERMATIONAL

USERS GROUP, INCORPORATED
_“_E

tructuring the flow of control can be implemented using the
COBOL constructs. but it requires good programmer disci-
line. Regrettably. those for logical structuring of data are
even more limited. When the limitations of COBOL are
pointed out, we will also provide workarounds for those
limitations.

To get the most out of COBOL. you must apply the
rules of structured programming. COBOI. has more than
enough features to completely destroy the structure of a pro-
gram. We will often stress the necessity of adhering to a
well-selected subset of COBOL.. Many language features will
have to be avoided to keep COBOL a clean programming
language.

The remainder of this article will investigate three
applications of the “fundamental principle™ of structured
programming to see how they work in COBOL:

1. code: limited control structures
2. data: limited scope of structures
3. programs: top-down design.

STRUCTURING THE CODE

The price of reliability is the pursuit of utmost simplic-
ity. (Hoare 1981)

. One of the primary challenges in programming is speci-
ving the flow of control: what to execute next and under

‘hzit conditions. Flow of control takes the form of branches,
loops. and other logical parterns: but only four control struc-
tures are sufficiently simple to be intellectually manageable,
while still providing sufficient power to solve all problems.

® Scquence
e Sclection
® Test and loop
® [.oop and test.

Complex control structures that cannot be directly decom-
posed into the four basic forms are much more complex and
are not intellectually manageable. You cannot grasp what
they “mean™ by a quick. or even a thorough, glance. There-
fore. program structure should be limited to combinations of
the four basics.

A programming language should allow a clear eXpres-
sion of the four basic control structures. avoiding syntactic
constructs such as GO TO. COBOI. provides three of the
four forms:

Sequence (starement. statement. . .)
Selection (IF-THEN-ELSF)
Test and loop (PERFORM-LUNTIL)

he fourth form loop and test can be simulated in
OBOL by initializing the UNTIL. condition o a PLR-
‘()RM to FALSE. before we do the PERFORM:

MOVE FALSE TO END-OF-CUSTOMER-FLAG.

PERFORM 20-READ-CUSTOMER
THRU 20-READ-CUSTOMER
UNTIL END-OF-CUSTOMER.

Basic Structure #1: SEQUENCE

A “sequence” is the first form of program that most of us
learn to write. Each statement follows simply after the pre-
vious one. When the last statement has been executed. the
program stops.

Sequence
(ENTRY)

|

l

(EXIT)

A sequence has one entry ar the top and one exit at the horiom.

Each box above contains a COBOL statement. such as a
MOVE statement. ADD statement, or a DISPL.AY state-
ment:

MOVE SPACES TO DETAIL-LINE.
ADD | TO PAGE-NO.
DISPLAY “END OF PROGRAM™.

It is difficult to convert a “sequence™ into a single unit. but it
is usually done by using paragraphs:

90-10-FORMAT-PAGE-HEADINGS.
ADD | TO PAGE-NO.
MOVE PAGE-NO TO PR-PAGE-NO.
MOVE“"REPORT TITLE" TO PR-REPORT-TITLE.

‘This new entity must be PERFORMed from within another
control structure. such as a selection. test and loop. or loop
and test. to produce more complex structures. But these
complex structures can always be analyzed into their com-
ponent structures. This keeps them intellectually manage-
able.

Of THE HP 1000 INTERNATIONAL
USERS GROUP INCORPORATED

JOURNAJ,

Basic Structure #2: SELECTION

«Gelection” means the selective execution of a single state-
ment, possibly from a group of statements. Execution always
“falls through” to the statement following, so there is only
one entrance to the structure and one exit.

SELECTIVE EXECUTION OF ASINGLE STA TEMENT

A test is performed: if the test succeeds. the statement in the
box to the right is executed: if it fails. the statement in the
box is not executed. This structure is represented in COBOL.
through the IF-THEN statement:

IF expression THEN statement
IF DB-END-FILE THEN
MOVE TRUE TO END-OF-CUSTOMER-FLAG.

SELECTION FROM TWO ALTERNATIVES

Selection from two choices is implemented in COBOL.
through the TF-THEN-ELSL statement:

IF expression THEN statement
E1.SE statement

IF DB-END-FILE THEN

MOVE TRUE TO END-OF-CUSTOMER-FLA
ELSE C‘
PERFORM 20-REPORT-CUSTOMER

THRU 20-REPORT-CUSTOMER-EXIT.

SELECTION AMONG MANY ALTERNATIVES

Selection from among many alternatives s implemented 1n
COBOI. through a sequence of IF-THEN-ELSE statements
that are nor nested:

IF case-1 THEN
statement-1

E1.SE

1F case-2 THEN
statement-2

EI.SE

ELSE
1F case-n THEN
statement-n
EISE
impossible case.

IF INCADD-TRANSACTION THEN
PIFRFORM 20-ADD-TRANSACTION
THRU 20-ADD-TRANSACTION-I' N
F1SE
IF IN-DELETE-TRANSACTION THIEN
PEFRFORM 20-DELETF-TRANSACTION
THRU 30-DELETE-TRANSACTION-I'NTH ,

ELSE

IF IN-CHANGE-TRANSACTION THEN

PERFORM 30-CHANGE-TRANSACTION
THRU 30-CHANGE-TRANSACTION-EXIT
ELSE
DISPLAY “Impossible transaction™.

The “impossible case™ is interesting. If we write our programs
correctly. it should never occur. But since we know that we
all make mistakes, including the “impossible case” makes
sense. In actual practice, the “impessible case” tsually turns
up an embarrassing number of times,.

In all variations of selection. as in all four of the basic
control structures. there is one entry and one exit to the
structure.

Basic Structure #3: TEST AND LOOP

The “test and loop™ structure performs a test and falls
through if the rest fails. Should the test succeed. a statement
isexecuted. after which the test is applied again. This process
continues until the test fails. There is no wav to get out of the
loop except by having the test fail (that is impertant- vou
cannot jump out).

Test and Loop

The “test and loop™ structure is implemented in COBOI.
through the PERFORM statement:
PERFORM procedure-name
UNTIL. expression
PERFORM 20-READ-CUSTOMERS
THRU 20-READ-CUSTOMERS-EXIT
UNTIL END-OF-CUSTOMERS.

Of course, the “test and loop™ can be nested within the
“selection” or “sequence.” and vice versa. to produce more

‘complex structures:
IF D-SALES-EXISTS THEN

MOVE FALSE TO END-OF-D-SALES-FLAG

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA

e —

PERFORM 30-REPORT-D-SALES
THRU 30-REPORT-D-SALES-EXIT
UNTIL END-OF-D-SALES.

In COBOL, care must be used when nesting control
structures. Any extraneous period ends the nesting of the
structures. When many statements are being nested, separate
them into another paragraph or section and PERFORM
them. Compare the statements below with those above. The
period changes the meaning entirely, and the nesting is
incorrect.

IF D-SALES-EXISTS THEN
MOVE FALSE TO END-OF-D-SALES -FLAG.
PERFORM 30-REPORT-D-SALES
THRU 30-REPORT-D-SALES-EXIT
UNTIL END-OF-D-SALES.

Basic Structure #4: LOOP AND TEST

The “loop and test” structure is similar to the “test and loop”
structure. except that the test is done after the statement is
executed instead of before. The loop statement is always
guaranteed to execute at least once.

Loop and Test

The “loop and test” structure is implemented in COBOL by
initializing the terminating condition to FALSF. and by
using the PERFORM statement.

initialize expression to false
PERFORM procedure-name
UNTIL expression

MOVE FALSE TO END-OF-CUSTOMER-FLAG.

PERFORM 20-READ-CUSTOMER
THRU 20-READ-CUSTOMER-EXIT
UNTIL END-OF-CUSTOMER.

Note that the initialization does not have to take place

OF THE HP 3000 INTERMATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

 a————————

exactly before the PERFORM statement, but it ALWAYS
should. Doing the initialization right before the PERFORM
statement alerts the reader to the fact that this is a “loop and
test” structure, instead of a “test and loop™ structure. This is
an area that requires good programmer discipline.

Structures to Avoid

COBOL has other control structures beyond the four basic
ones. but they should be avoided. Control Structures to
avoid: GO TO, ALTER, STOP RUN.

THE GO TO STATEMENT

GO TO is universally banned in structured programming.
Here's why: GO TO can be used to build the basic logical
structures and many others. Because the temptation to build
other structures is so strong. GO TO should never be used at
all.

Programmers usually turn to GO TO when they are
revising existing code to handle new exceptions: “"Restruc-
turing this code is too much work. but if I just insert a GO
TO here. | think it will do what I want.” One key to eliminat-
ing the need for GO TO statements is the judicious use of
LOGICAL flag variables.

IF UPDATE-TRANS THEN
CALL DBUPDATE USING BASE. DSET. MODE.
STAT. LIST. BUF
[FSTAT NOT EQUAL 0 THEN GO TO DB-ERRS.
ELSE NEXT SENTENCE
ELSE
CALL “DBPUT” USING BASE. DSET. MODE.
STAT. LIST. BUF
IF STATNOT EQUALOTHEN GO TO DB-ERRS.

DB-ERRS.
CALL “DBEXPIAIN” USING STAT.
DISPLAY “Database error - call svsmanager™.
STOP RUN.

This piece of code may have occurred as follows: originally,
the code consisted of only a DBPUT, plus theerror handling:
then. a DBUPDATE was added. Rather than duplicate the
error-handling statements. the programmer inserted a label
and a GO TO (a false economy). Adding a local flag (FATL-
URE-FLAG) would have allowed the error-handling state-
ments to be shared by both calls without a GO TO:

MOVE FALSE TO FAIL.URE-FLAG.

IF UPDATE-TRANS THEN
CALL “DBUPDATE” USING BASE. DSET.
MODE, STAT. LIST. BUF
IFSTAT NOT EQUAL O THEN MOVE TRUE TO
FAILURE-FLAG.
ELSE NEXT SENTENCE

ELSE
CALL “DBPUT” USING BASE. DSET. MOD
STAT, LIST, BUF
IF STAT NOT EQUAL 0 THEN MOVE TRUE TO
FAILURE-FLAG.
IF FAILURE THEN
CALL “DBEXPLAIN" USING STAT
DISPLAY “Database error - call sys manager”
STOP RUN.
In this particular case. an even better solution would be to
centralize the error handling into a single module:

99-FATAL-ERROR SECTION.

CALL “DBEXPLAIN" USING STAT.

DISPL.AY “Database error - call sys manager™.

CALL “*MISQUIT™ USING STAT.
99-FATAL-ERROR-EXIT. EXIT.

THE ALTER STATEMENT

ALTER causes the object of a GO TO to change at runtime.
As if the GO TO statement was not harmful encugh. the
ALTER statement guarantees that your programs can
NEVER be debugged or maintained. If yvou have any pro-
grams that use the ALTER statement. throw them awas:
they will cause a major application disaster.

The ALTER statement is dangerous because a wal
through of the COBOL code is almost impossible. since the
object of a GO TO can be changed dvnamically. A progra
that uses ALTER smust use the GO TO. Every rule of struc-
tured programming is broken when using the ALTER
statement.

THE STOP RUN STATEMENT

STOP RUN causes an immediate termination of the pro-
gram. A COBOIL. program should be well structured: it
should have one entry point and one exit. The STOP RUN 1
equivalent to a loop with more than one exit.

An cxample of the damage caused by STOP RUN 1y
when it is used to terminate on a fatal error front a sub-sys-
tem such as KSAM. In some versions of KSAM. terminating
a program without closing the open KSAM files leaves the
KSAM files in an ABORT state. 1t is extremely difficult to
go back and climinate cach and every STOP RUN statement.

There is one exception to the one-exit-point rule in a
program. There should be a fatal exit point that v PHR-
FORMed when a call to IMAGE fails for an unexpevied
reason. This module should print the reason for the TM AGE
failure and call the intrinsic QUI1T. which notifies the operat-
ing system that an ABNORMAL. termination has occur:ed.

STRUCTURING THE DATA

For a well-structured program. the flow ol data 1§ just as
important as the flow of control. In order to keep a progra

ithin your intellectual grasp. it is essential to know at all
imes where and when the values of cach variabla are uscd or
redefined. There urc 2 number of guidelines that lead to well
structured data:

® limit the scope of variables

® cxplicitly declare atl variabics

® use meaningful data name-

® use hierarchical data structurs,

Limit the Scope of Variables

Onc method of making it casics 1 grasp what the variables
arcdoingina program is 16 Jinni the area of the program in
which the variable can be wccessed i his is called limiting the
scope. Ifa variable’s scopeis himied 1o single rindule. vou
do not have to bother to hak ir oiher modules to see i they

are changing it. It a varizhic s deciared globallv. it can be

altered in any module of the eniir orogram. Unforiunately,
in COBOL all variables are gichul unless subroutines are
used. Variables in subroutires are birddon (rom the mainline
and from any other subroutines,

A common practice that viotates this guideline is that
ofusing a globat utility variablc such as [ARG, X. or | for
Taany purposes in a program - subseript, line-length counter.
‘:op index, ete. Fach use is local. bat it is difficult to tel] at

1

1any places in the program if or how it is being used. With

ested module calls, it becomes quite likely that a global
the same time. This situat;on is realiy the same as the unre-
stricted use of GO TO.

tility variable will be used for 1wo vonflicting purposes at

Use cach variable for one purpose only and declare it
as close to the use as possible. In COBOL . this must be done
by the programmer. Using comments, cach module should
identify which important con-rol variables are being char ged.
Each module should oniy change a small number of « artables.

One reason for using subprograms is to hide data from
the mainline or from other modules. In addition. if a sub-
program is dvnamic. it uses the HP 3000 stack space raore
efficiently.

Explicitly Declare All Variables

My suggestion was to puass on a request of ous custo-
mers to relax the ALGOTD 60 ruley of compulsory dee-
laration of variable names and adopt some reasonable
default convention such as that of FORTRAN. T was
astonished by the polite but firm rejection of this seem-
ingly innocent suggestion: Tt was pointed out to me the
redundancy of AL GOL 60 wae the best pretection
against programming and codi which conld

SELOrsS

o

be extremely expensive to detect b a runnmg program

and even more expensive vt o, he story ot the

Mariner space rocket to Menies, Inst hecause of the fack

JOURNA],

OF THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

of compulsory declarations in FORTRAN. was not to
be published until later. (Hoare 1981)

Fortunately. COBOL requires that all variables be declared
prior to use.

Use Meaningful Data Names

Variables should always be given long and meaningful
names: COBOL treats the fist 32 characters of a variable
name as significant. Each variable should have a specific
function a purposc that it serves within the structure of the
program - just as each module should have a function,

The objective of data numing should always be to help
make this multiplicity of entities intellectually manageable
by reducing the amount of arbitrary information that the
programmicr muast remember. A programmer should be able
to deduce what a picce of code does by looking at it (i.e.,
without scarching the entire program).

For example. suppose vou plan to index through two
tables. a customer array and an im entory array. Even if the
twoindexing operations are never done “concurrently.” the
program will be cicaner if vou declare two index variables
with very specific names than if vou declare a single index
variable called INDEX (or even worse: X).

MOVE ZEROS TO X,
PERFORM PRINT-RECORD
UNTIL X = 10 OR CUST-NAME(X) = SPACES.
MOVE ZFROS TO X,
PERFORM UPDATE-RECORD
UNTIL X > 20 OR ITEM-NAME(X) = SPACES.

MOVE ZEROS TO CURRENT-CUST.
PERFORM PRINT-RECORD
UNTIL CURRENT-CUST > 10 OR
CUST-NAME(CURRENT-CUST) = SPACES.
MOVE ZEROS TO CURRENT-ITEM.
PERFORM UPDATE-RECORD
UNTIL CURRENT-ITEM > 20 OR
ITEM-NAME(CURRENT-ITEM) = SPACES.

This may require a little more tyvping. but it wilt save a Iot of
scarching through the program later. Further. how do vou
know that vou won’t want to index both tables concurrently
in some future revision of the program?

The example demonstrates how two modules can
communicate. The PRINT-RECORD module uses the CUST-
NAME (CURRFENT-CUST) variable as input. This should
be identiticd by a4 comment in the PRINT-RECORD
module.

By the wav, those examples contain another example
ot inadequate naming. What is the meaning of the constant
values 10 and 20 that are used to stop the loops? The code
would have much more meaning to the reader if those values

OF THE HP 3OO0 INTERNATIONAL
USIRS GROUP, INCORPORATED

JOURNA

were replaced by MAX-CUST and MAX-1TEM or other
suitable names.

Many programmers are in the habit of using short,
casv-to-type names for variables. This is a mistake. The name
should be as long as necessary to describe the variable.

F EOF END-OF-FILE END-OF-FILE-FLAG
END-OF-CUST-FILE-FLAG

Which of the above communicates the most?

Another technique that can be used to enhance the
meaning of names is to use a prefix or a suffix. If vou have a
group of variables that are used for a related purpose. give
them a common prefix or suffix.

Dataset name, buffer. and ficld-list, with prefix:
05 DB-SET-M-PRODUCT PIC X(10)
VALUE “M-PRODUCT.™
05 DB-BUFFER-M-PRODUCT.
10 MPR-PRODUCT-DESC PIC X(20).
10 MPR-PRODUCT-NO PIC S9(8).

Parameters to subroutines (e.g.. MISDATE, a date editor):
05 DATE-FROMTYPE PIC S9(4) COMP.
05 DATE-TOTYPE PIC S9(4) COMP.
05 DATE-AUX PIC S9(4) COMP.
05 DATE-RESULT PIC S9(4) COMP.
88 DATE-OK VALUE ZEROS.

OVERVIEW OF COBOL DATA STRUCTURES

The data structures of COBOL consist of simple variables,
arrayvs (OCCURS), and hierarchical data structures. The
basic data tvpes include character, display. binary (COMP),
and packed-decimal (COMP-3). All data is global within a
COBOL program.

Constants

COBOL has no provisions for named constant values.
Instead. variables initialized to a constant value should be
used.

01 TRUE
0! FALSE
01 CUST-MAX

PIC X VALUE “T".
PIC X VALUE “F".
PIC $S9(4) COMP VALUE 10.

Simple Variables

01 PAGE-NO
0! TOTAL-BALANCE

PIC S9(4) COMP.
PIC S9(15)V99 COMP-3.

Logical Variahles

COBOI has no logical tvpe (i.c.. variables that have a true
or false value). Instead these must be created by using 8g-level
declarations.
01 END-OF-CUSTOMER-FLAG PIC X.
g8 END-OF-CUSTOMER VALUE =T

You should use 88-level variables as much as possible. Vnr.
ables that contain status information, input processin
options. page counters, and any other variables with a smal
fixed number of values should be qualiticd with 8&-level
names.

LIMITING THE SCOPF OF DATAIN COBOI

COBOI has no wayv of declaring difterent scopes for varia-
bles. 1t is up to the programmer to limit the scope of varia-
bles. by alwavs limiting the number of variables that arc
changed in any single module.

Communication between modules is done on an ad hoe
basis. The programmer should identify what variables are
input, and what variables arc output. {or cach module. Clar-
ity of purpose is enhancedf there is only one output variabie.
This lack of scope is the most common cause of bugs n
COBOI. programs.

Using subprograms makes the interface between modules
explicit. A subprogram can only access variables of the main
program if they are passed as parameters.

Use Hierarchical Data Structures

Up until now [have not mentioned the work “hier-
archy.” but [think that this is the key concept of all .
systems embodying a nicely factored solution. . .the

only problems that we can really solve in a satisfactory .
manner are those that finally admit a nicely factored
solution. (Dijkstra 1972)

Hicrarchical systems seem to have a property that
something considered as an undivided entity on one
level is considered as a composite object on the next
lowest level of greater detail: as a result the natural
grain of space or time that is applicable at each level
decreases by an order of magnitude when we shift our
attention from one level to the next lower onc. We
understand walls in terms of bricks. bricks in terms of
crystals. crystals in terms of molecules, etc. (Dijkstra

1972)

A language should permit hicrarchical data declarations.
COBOI1 allows this in the data division:

01 CUSTOMER-RECORD.

05 CUSTOMER-ID-NUMBI'R PIC X6
05 CUSTOMIER-NAME PIC X330y,
05 CUSTOMER-ADDRESS.
10 ADDRIESS-LINE-I PIC Xtio)
10 ADDRIESS-TINE-2 P Xito)
10 ADDRESS-LINE -3 PiC Nelo,
05 CUSTOMER-PHONE-NUMBER - PIC

‘\u?g

Notice how the favers o detinion and abstrastitor aty g
PASCAI ®

clear in this record, has cven better hicrarchi]

:apabilities than COBOL; PASCAL allows you to assign a
ame to astructure and treat it as a separate entity. You can
declare an array of type CUSTOMER-RECORD.,

STRUCTURING THE ENTIRE PROGRAM

We all know that. . .the only mental tool by means of
which a very finite piece of reasoning can cover a
myriad of cases is called “abstraction™. . .the purpose
of abstraction is not to be vague. but to create a new
semantic level in which we can be absolutely precise.
(Dijkstra 1972)

The design of a program and the design of its specifica-
tion must be undertaken in paratlcl by the sare person.
and they must interact with each other, A lack of clarity
in specifications is one of the surest signs of a deficiency
in the program it describes. (Hoare 19%1)

There are two wavs of constructing a software design:
One way is to make it so simple that there are obviously
no deficiencies and the other wary s to make i so com-
plicated that there are no obvious deficiencics. (Hoare
1981)
Programming i preeminently a process of abstraction.
1hercfore. the programmer needs s many abstracting tools
.l[his disposal as he can find. One of the most powerful

.abs[racting tools is top-down design.

Top-Down Design and Construction

Top-down design is a method of applving the abstraction
principle to the construction of complex computer programs.
The pattern of top-down programming is as follcws:

I Write the main module. freelh using undefined terms.

2. Definc the undefined terms by writing COBOL. SEC-
TTONs. again freely using undefined terms. and by
declaring data variable.

3. Repeat this process until all terms have been defined.

Throughout the top-down construction. cach module con-
tains only simple. straightforward code. written without GO
TO. and using only the four basic control structures. This
helps in eliminating logical errors. I'rograms using the top-
down approach can. and should. be (ested after cach iteration
by writing dummy procedures (called “stems™) for the unde-
fined terms. Testing is repeated at cich level of abstraction.
When the program decompaosition :nd coding 15 done. the
program has also been completely tested.

The “Virtual Computer” Concept

At each level in the decomposition process. the code is writ-
en as though the computer could understand previous unde-
fined terms. This concept of a “virtual computer” is very
‘)owerful and helpful in making complex problems simpler.

JOURNAJ,

Of THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATID

It allows you to concentrate your efforts on a clear subset of
the problem, and it makes that subset of the problem solva-
ble. If you can solve each subset of the problem, eventually
you can solve the entire problem.

There are also great advantages to testing and debug-
ging at each level of decomposition. If you do find an error
during testing, you only have to look at the changes intro-
duced at this level of abstraction. By definition, the previous
levels have already been tested, and they are not normally
modified when you go to the next level.

COBOL SECTION:Ss as an Abstracting Mechanism

A language should provide a way of abstracting complex
details so they can be treated as single entities at another
level This Is abstraction. It is supported in COBOL via the
SECTION and paragraph declarations. You only need to
know the SECTION’s name and pseudo-parameters, but not
how it actually works. Fach time that we refer to a module
we mean a COBOL SECTION. These modules should be
small. about a page of COBOL code. and well defined.

Communication Between Levels

Communication between modules is facilitated by the passing
of pseudo-parameters. as described above under Data Strue-
tures. Modules should not have too many parameters- never
more than vou can memorize easilv.

[t is also a good idea to document which parameters
are input values and which are output. A single output
parameter is desirable, for the same reason that a control
structure should have only one exit: it increases the intellec-
tual manageability of the module.

Top-Down Programming in COBOL

Modules are the key tool in the use of top-down techniques
in COBOL. With the abstracting power of modules and
paragraphs. vou should never have to repeat similar code.
You can define a common utility routine and use it in any
program that needs it. Nor should vou have to write a module
that is more than one page long. because vou can break it
into several modules, At any level of abstraction. each
module should perform a well-defined function, and that
function should be obvious from the name assigned to the
modulc,

Modules should often return a logical result that indi-
cates success or failure. An advantage of returning logical
results is that theyv remind us to deal with potential failures,
no matter how unlikely, in every module.

PERFORM 20-GET-CUSTOMER

THRU 20-GET-CUSTOMER-EXIT
UNTIL END-OF-CUSTOMER.

©OF TME HP 3000 INTERNATIONAL
USERS GROUP INCORPORATID

JOURNA],

S —

PERFORM 20-10-CHECK-CUST-REC.
[F CUST-REC-OK THEN

Think of your program as a potential software product. State
the objectives of your program as abstractly as you can.
Anticipate demands for enhancements by building a general
model to solve a class of problems. The abstract solution will
be cheaper in the long run.

An Example of a Program Structure

| have developed two sample programs called GOOD and
BAD for a workshop in COBOL programming standards.
The BAD program contains every mistake that a program
could have, while still running. The GOOD version of the
program accomplishes the same function, but does so using
structured programming techniques. Here is a sample of the
GOOD program:

Mainline
PROCEDURE DIVISION.
00-MAIN SECTION.

DISPLAY “MIS001-", REVISION-NO.
DISPLAY " "

PERFORM 10-INITIALIZE
THRU 10-INITIALIZE-EXIT.

IF INIT-OK THEN
SORT SORTFILE ON ASCENDING KEY
SORT-CUST-ACCOUNT
INPUT PROCEDURE IS 30-SORT-INPUT
OUTPUT PROCEDURE IS 40-SORT-OUTPUT.

00-MAIN-EXIT. GOBACK.

The mainline and the initialization module communicate
with the INIT-OK-FLAG. The initialization module sets the
flag to TRUE or FALSE. depending on whether it succeeds
in initializing the program. The control portion of the initial-
ization module is:
Initialize
10-INITIALIZE SECTION.
MOVE FALSE TO INIT-OK-FLAG.
PERFORM 10-10-OPEN-STORE.

IF DB-STAT-OK THEN

PERFORM 10-20-INIT-REPORT

PERFORM 10-30-INIT-CST-TABLE

PERFORM 20-GET-DATE-PARAMETERS

THRU 20-GET-DATE-PARAMETERS-EXIT.

The “get date” module sets the INIT-OK-FLAG to TRUE if
it succeeds in obtaining an opening and a closing date for
selecting records. The input phase of the sort is straight-
forward:

10

Sort Input
30-SORT-INPUT SECTION.

PERFORM 30-10-REWIND-M-CUSTOMER.
MOVE FALSE TO END-OF-CUSTOM ER-FLAG.

PERFORM 30-20-GET-M-CUSTOMER
UNTIL END-OF-CUSTOMIR.

The get M-CUSTOMER paragraph will set the END-OF-
CUSTOMER flag to TRUE when it reaches the end of the
input data. Finally, the sort output phase is:

Sort output
40-SORT-OUTPUT SECTION.

MOVE FALSE TO END-OF-SORT-FLAG.

PERFORM 50-REPORT-CUSTOMERS
THRU 50-REPORT-CUSTOMERS-EXIT
UNTIL END-OF-SORT.

PERFORM 95-PRINT-CUST-STATUS-TABLE
THRU 95-PRINT-CUST-STATUS-TABLE-EXIT.

40-SORT-OUTPUT-EXIT. EXIT.

Enriching the Environment

There is one extension to the top-down method that can be
extremely productive in an COBOL environment. You ca.
think of this new method as “enriching the environment.”
When faced with a difficult programming task. it is casier t
design the program if you can take certain details for granted.
For example. when writing an accounts receivable svstenm. if
we store the records in an IMAGE 3000 databasc. we can
ignore how the records arc stored on disc, and how thev are
indexed and linked together. IMAGE 3000 takes care of
those details for us. All we have to worry about is making
the calls to IMAGE correctly. The IMAGE routings are not
part of the abstract model of the program. They are utility
functions. like the MOVE statement of COBOL. that are
treated as basic operators at any level in the design.

The utility approach can be applied to many task~. bor
example. if your program requires table look-up validation,
define a separate support library for performing look-ups.
The implementation of this support library is a separate task
in top-down design: but once the COBOL. subroutines or
modules have been designed. coded. and tested. they van he
wd

ERIATRTR

taken for granted in other programs. Since @ progia i
not be concerned with the internal details ol thye s

library. the program can be simpler and more el
manageable. Since “enriching the architecture™ ndos Trom
other programs the detalls of how the support facitt s
implemented, you can reprogran the support coutings w i -
ever vou think of a better iniplementation.

Another place to apply thisapproachis in the vhedd

and converting of dates. In all DI systems, yo v o

ble to check whether a date is valid and within certain

mits. and then you need to convert it to the format used in

our database. Rather than code these edits and conversions
into every COBOL. program repeatedly. vou should kave a
standard utility routine that performs all date functions—
MISDATE. for example. Bob Green’s SPLAIDS?2 package
(Green 1981) contains a good example of such a routire,

This MISDATE routine will solve an entire class of
problems. not just a particular problem. The problem of
dates must be solved for almost every COBOL prograin. By
solving it once, we can thereafter ignore the details of dates,
knowing that MISDATE will look after them. If MISDATE
does not have all of the features needed for our application,
it can be enhanced. But. MISDATF is the only module that
needs to be changed.

Structured Programming for Commercial Systems

Commercial data processing projects generate a large number
of programs, but only a small number of program classes.
There may be 34 different reports to write which bave a great
deal in common. In fact. a consistent and understandable
output for the end user requires a great deal of commonality
in the programs,

When vou have written one data entry program at an
installation, vou should be qualified to write the next and to
‘ndcrstand the others. Wherever possible. new programs
should be developed by starting with a house-standard sam-
le program of that class. Modifications are then introd uced.
in a standard way. of coursc,

Michael Kohon, formerly manager of severzl HP 3000
sites in Europe and now president of Datasoft Internaticnal,
has created an implementation strategy that he calls “step-
by-step™ (Kohon 1982) With his method. vou analyse the
end users’ problems into components. until the largest project
can be completed in two weeks. Then vou attack the project
that the user needs most. In this Wayv. vou never have to
throw away more than two weeks of work. Also. vou elicit
end user involvement by delivering products to him every
two weeks. You get immediate feedback as to his true needs.
which may change from month to month. With “step-by-
step.” software development is a constant process of refine-
ment and evolution. There are no big surprises. good or bad.

Contrast “step-byv-step™ with the traditional systenis
development methods, Normal data processing practice calls
foran extensive investigation of the entire problem, followed
by a general design. 1f the user approves the design. tvpically
a large document that he doesn't quite understand. detailed
design of the entire project follows. This step generates
another large document and another review phase. (No code
has been written yet. and the user still does not know how

he finished system will “feel™ in practice.) Other phases fol-
‘low in succession: programming. testing. documentation.

—

11

JOURNA],

OF THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATEQ

integration, user training, and production turnover. Often,
projects run as long as two years with no discernible output.
When the product is delivered and is unacceptable to the
user, a tremendous investment must be written off. Even
with a large investment in up-front work, the typical installa-
tion spends at least as much on maintenance of the existing
Systems as was spent to develop them in the first place. Thus.
in the end. they are forced into an evolutionary approach,

With “step-by-step.” data processing problems are
broken down into intellectually manageable chunks. Fach
project is easily within the abilities of the programmer. As a
result, 1f structured programming techniques are applied.
logical bugs can be virtually eliminated. The maintenance
program and the development program become indistin-
guishable.

SUMMARY

Programming languages should invite us to reflect in
the structures of the program all abstractions needed to
conceptually cope with the complexity of the design.
(Dijkstra 1972)

The original goals stated for this article were to find a method
of programming that would eliminate the bug problem and
to improve programmer productivity. The method proposed
was structured programming,

By using structured programming principles in COBOL.
these goals are not only attainable. they carry with them a
surprising bonus: increased program efficiency (i.e.. less code.
faster execution, less data storage. and better user interface).

ACKNOWLEDGMENTS

This article is based on the chapter. “Structures.” from the
learning guide SPL/3000 in « Commercial Installation
(Green 19%81) The “Structures” chapter and this article use
the same concepts of structured programming. Each gives
examples from a specific language. but these concepts reach
past the confines of programming languages. I am grateful
to Robert Green for his presentation ideas,

REFERENCES

All ot these references have insights into the problems ot programming and
swstem development. After the materia] in this article has become tamiliar,
the references should be read for more ideas

Ditkstra. Fdger W~ The Humble Programmer.” Comnumicarions o) the
ACM IS no 10 (October 1972,

Green. Robert MU"SPL 2000 1n 4 Commercial Installation.™ S P 41D S0
Selt-Paced Learning Puckage. Aldergrove, British Columbia: Robel]
Consulting Tud.. 1981,

Harbron. Tom. “Structured Programming: State-Descriptive Systems,”
HPGSUG Jowrnal 1. no. 4 (1977,

Hoare. €. A R. “The Emperor's Old Clothes ™ Commuunications of the
ACM 24 no. 2 (February 1981).

Kohon. Michel. “Introduction to Step by Step. " INTERACT, March April
1982 (Mountain View, Calil.: HP 1UG).

DURNAL,

OF THE WP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

S E———— —

Suggestions for Implementing Hierarchical (Bill-of-Materials)
Data Structure Using IMAGE

Paul A. Knaplund

Western Data Corporation
Bellevue, Washington

INTRODUCTION
Background

Although many business data structures may be casily
represented in IMAGE. there are some structures that require
careful attention in their design and use. This paper focuses
on one of these more complex information structures:
designing and using a Bill-of-Materials (BOM) data structure
with DBSCHEMA statements and pseudo-code provided.

Perhaps a definition of a Bill-of-Materials tree is in
order: the BOM structure describes the relationships between
ordered pairs of entities (read: parts). such that one of the
pair is an owner (assembly) and the other a member
(component).

Information Sources

Information sources for this paper include over three vears
personnel experience designing and using IMAGE. 110G
proceedings papers, and other database literature. A biblio-
graphy is provided at the end of this paper.

DESIGN AND USE OF A BILL-OF-MATERIALS
DATA STRUCTURE

Design

There are several processing requirements that the design of

4 BOM structure should accommodate:
e a part explosion
e a where-used listing
o multiple levels or depth of the tree
e retain information associated with the assenmbhy com-
ponent relationship. such as quantity used.

It is also desireable to minimize the number of data sets and
paths required to support this structure.

Not surprisingly. the solution is both simple and cle-
gant. Utilize a part manual or automatic master data set with
two paths pointing to a single component detall data set.
Stored in the component data set arc:

i e sssembly part number, path #1 from the part master

| e component part number. path £2 from the part master
| e guantity required and other data elements that pertain
1o the intersection of the assembly and component part
numbers.

The DBSCHEMA instructions to create this structure
look like this:

ITEMS:

(1) ASSEMBLY-PN. X 16

| 2y COMPONENT-PN. X16:

! (3) P\, X16; Q
4 QTY-REQD. 102:

\ Lines 1. 2.3 and 4 detine the items to the I)BS(‘I{F\"
I processor. Note that ASSEMBLY-PN.COMPONENT-P
and PN are identical in their definition. ASSEMBLY-PN\
Cand COMPONENT-PN will be used as aliases for the PN
i field in the COMPONENT-DTI data set. Line 4 is the
QTY-REQD (quantity required) item definition.

SETS:

(5) NAME: PART-MASTER. MANUAIL:

(6) ENTRY: DPN(2).

| << other data. such as part description. cte. = =
CAPACTTY: nnnnn:

, t7) NAME: COMPONENT-DTL. DETAIL:

‘ (%) FNTRY: ASSEM BIY-PN(PART-MASTER!).
| (9 COMPONENT-PN(PART-MASTI'R).
f (1 QTY-REQD:

5 CAPACITY: nonnng

o Tine Snames PART-MASTLER as a manual master data set.
I A manual master is used for several reasons: first. it makes
L wense Lo store the part deseription. unit-of-measure, ete. here:
additionally. we want to enforee the existence of a PARIT-
" MASTER record for every part i the BOM structure.

| [ine 6 establishes PN as a kev clement with two paths.,
| both pointing to the COMPONENT-DTI. data sct.

i [ine 7 names COM PONENT-DTI. as a detail data \;Q

12

named ASSEMBLY-PN and COMPONENT-PN in the
COMPONENT-DTIL. data set (lines 8. 9).

like this:

OF THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

JOURNA

For clarity. the paths from the PART-MASTER are

Using IMAGE pictoral representation, the design looks

PART-MASTER

ASSEMBLY-PN COMPONENT-PN

\COMPONENT—DTL 7

This design meets all of the design objeetives: it allows for
multiple Tevels (actually there is no depth limiv): processes
the BOM explosion and where-uscd reports: and minimizes
overhead by emploving few data sets and paths.

CREATING. There are several constraints that must be

|
\
{
\
Creating and Using the Bom Structure : J’
\
|
|

adhered to when creating and maintaining the BOM tree.
namely: J

These constraints serve to eliminate the possibility of endless
looping when traversing the trec. Optionallv. the classic
hierarchical constraint may be applied. which is that a com-
ponent must have one and only one parent asembly above it.

requires retrieving the chain of assembly part numbers for a
given component. In pseudo-code:

CSE Two important uses of the BOM structure are to pro-
duce a where-used report and a parts explosion.

® no assemnbly may have itself as a component |
® ifanassembly (sav. a piston) is the immediate owner of
a component (piston ring). then the component piston
ring may not be an owner at any level above the piston.

The where-used report is very easily produced. It

) MOVE “"COMPONENT-PN" to ITEM-KEY

) MOVE <component kev value™ TO SEARCH-KEY

)} MOVE “N" TO END-OF-CHAIN

VEIND CHAIN HEAD <<DBFIND. status checx >> |

50 GET NEXT IN CHAIN <<DBGET. MODE S 6. status |
check »>

(6) PERFORM UNTIL END-OF-CHAIN = “Y*

PRINT <assembly part number>

GETNEXTIN CHAIN <<DBGET. MODE 56,

status cheek >>

(1
(2
(3
(4

-_—

(7) END-PERFORM

The parts explosion is considerably more complex
and requires a stack data structure for processing. As the
BOM tree is traversed (in preorder fashion). the stack will
contain the record number of the brother of the last part
processed at each level. The stack will also contain the com-
ponent quantity requirements for each level.

ENGINE
VALVE COVER PISTON.
REC#: 12 REC#: 3
QTY: 1 QTY: 8
RINGS PISTON ROD
REC#: 7 REC#: 5
QTyY: 3 QTY: 1

The BOM tree will be traversed in the following order:
ENGINE. VALVE COVER. PISTON, RINGS. PISTON
ROD. VALVE COVER and PISTON. RING and PISTON
ROD are brothers. VALVE COVER. RINGS. and PISTON
ROD are leaves in the tree (without children). Processing the
tree 1s performed in this manner:

I. The chain head for components below ENGINE is
located.

2. Since VALVE COVER and PISTON are components
below ENGINE., the chain head will exist. Therefore,
set (DBGET), the first in the chain.

3. VALVE COVER is now present in the work area.
STACK-LEVEL is set to one. and the next record
number (DBSTATUS words 9 & 10) is moved to the

OFf THE HP 1000 INTERNATIONAL
USERS GROUP INCORPORATED

OURNAL,

NEXT-REC (1). In the above example, the next record
number is 3, which refers to PISTON. The current
stack quantity required is 1 * 1. or 1.

4. Process the VALVE COVER part.

5. Set up to determine if VALVE COVER has any com-
ponents. Move VALVE-COVER to the search key, use
ASSEMBLY-PN as the path, and perform a DBFIND
(similar to step 1).

6. Since VALVE-COVER has components below it. we
next check to see if VALVE-COVER has a brother as
yet unprocessed. If the next record in the stack is not
sero. then a brother awaits further processing. In this
case. the next record is equal to 3, which points to
PISTON.

7. Issue a directed read against record 3 (DBGET mode
4), using the record number from the stack as the
argument. Since PISTON has no other brothers (except
VALVE COVER. already processed). the next record
is zero so therefore NEXT-REC (1) = 0.

8. PISTON is now present in the work area. STACK-
LEVEL is still at one. with the next record being 7ero.
The current stack quantity is I * 8 or &.

9. Process the PISTON part.

10. Set up to determine if PISTON has any components
(see step 5).

11. Since PISTON does have components (RINGS and
PISTON ROD). add 1 to STACK-1.LEVEL. and moyve
the brother of RINGS(PISTON ROD" record number,
5) to the next record of the current STACK-1.EVEL,
which is now 2. or NEXT-REC (2} = 5.

12. Process the RINGS part number.

13. Set up to determine if RINGS has any components

below it.

RINGS does not have components, =0 issue a dirccted

read to bring PISTON ROD into the work darea {see

step 7). There are no more brothers under PISTON. s0
the next record of STACK-LEVEL = 21is vero.

15 Process the PISTON ROD part number.

16. Set up to determine if PISTON ROD has any compo-
nents below it. There are no components helow PIS-
TON ROD.

17. Since the next record at STACK-LEVEL = 2 s zero.

we have processed all components below PISTON.

Decrement STACK-LEVEL by 1.

STACK-LEVEL is now I. Since the next record at

STACK-LEVEL = 1 is zero. we have processed all

components below ENGINE. Deerement STACK-

LEVEL by 1 again.

19 STACK-LEVEL is now less than 1, which indicates
that we have finished the traversal.

Pseudo-code to perform the tree traversal:

(1) MOVE “ASSEMBLY-PN” TO SEARCH-PATH
(2) MOVE “ENGINE” TO SEARCH-KEY-VALUE

3

(8
9
(10
(1l

(12
(13
(14

(15
(le

(17

(18
(19
(20

Not

I

~

RN

Y MOVE ZERO TO STACK-LEVEL
) PRINT “ENGINE"
y FIND CHAIN HEAD
y GET NEXT IN CHAIN
) 1E CONDITION-WORD = ZERO
ADD | TO STACK-LEVEL
MOVE NEXT-RECORD TO NEXT-REC (STACK-
LEVEL)
ENDIF
) PERFORM UNTIL STACK-LEVEL < I
)y CALCULATE BOM-QTY-REQ
y PRINT COMPONENT-PN. BOM-QTY-REQ
) MOVE COMPONENT-PN TO SEARCH-KEY-
VAL UE
)y FIND CHAIN HEAD
) GETNEXT IN CHAIN
y IF CONDITION-WORD = ZERO
ADD 1 TO STACK-LEVEL
MOVE NEXT-RECORD TO NEXT-REC (STACK-
[LEVEL)
) ELSE
y PERFORM UNTIL NEXT-RECORD (STACK-
LEVEL) NOT = ZERO AND STACK-LEVEL =
ZERO
SUBTRACT 1 FROM STACK-T.EVEL
END-PERFORM
y IF STACK-LEVEL = 7ZERO AND NEXT-RECORI
(STACK-L.EVEL) NOT = ZERO
READ BY RECORD NUMBER ’
MOVE NEXT-RECORD TO NEXT-REC (81 ACK-
[LEVEL)
y ENDIF
) ENDIF
) END-PERFORM

s on the preceeding pscudo-code:

Use the ASSEMBLY-PN path for scarching.

~ Assume ENGINE is the part we want to explode.
Initiatize STACK-1.EVEL to sero. The STACK-
LEVLL variable determines what level of the tree i
being processed.

4. Print the master part number.

N

DBEIND. on the COMPONENT-DTL. Check status.

6. DBGET. MODE 5 or 6. Again. check status.
7 1t ENGINF has components. inerement STACK-

LI'VEL by 1 to enter into the perform loop.

% Loop until all entries are processed, signated by the

STACK-T EVED wvariable reaching sero.

9. BOM-QTY-REQ- CURR-QTY-REQ (STACK-1FV-

Fl.) * component gty.

(0. Print the component part and required component

11

value of STACK-LEVEL.
Set up to look for children under current componcn@

guantity on the listing. Optionally. indent based (Q

OFf THE HP 3000 INTIRNATIONAL
USERS GROUP. INCORPORATED

JOURNA,

12. DBFIND, on COMPONENT-DTL. Check status.
(Step 5).

13. See step 7.

I4. Increment STACK-LEVEL if current part has com-
ponents. Move next record from the DBSTATUS area
to NEXT-REC in the stack.

15. Otherwise. .

16. Check to sec if the current level has brothers remaining
to be processed. H not. back up a level and try again,
until the STACK-LEVEIL variable is zero.

I7. 1f we found a brother not processed. move tha: part
current in the work area by usinga DBGET MQDE 4
using the NEXT-REC (STACK-1.EVEL) value. Move
the next record from the DBSTATLUS to NEXT-REC
(STACK-L.LEVEL).

I18. End IF for processing additional brothers.

19. End IF for processing additional component levels,

20. End of perform loop.

SUMMARY

Many information structures are disguised Bill-of-Material
trees. For example. a general ledger chart of accounts and a
company organization chart are similar in many respects to
the BOM structure. The given DBSCHEMA statements and

seudo-codes can easily be modified to apply to these cases
as well.

One nice feature of the above pseudo-code examples is
that they do not affect the currencv of the PART-MASTER
data set as traversal occurs in the COMPONENT-DTL data
set. To process all parts, merely put an outside loop with a
serial read (DBGET MODE 2) against the PART-MASTER

data set. before entering the inside loops of the examples. A
problem arises if you want to print the component descrip-
tion in addition to the component part number when travers-
ing the tree. To do this. save the current record number from
the serial read on the PART-MASTER data set before the
first DBFIND on the COMPONENT-DTL. Then, for each
component, perform a calculated read (DBGET MODE 7)
against the PART-MASTER to obtain the component part
description stored in the PART-MASTER record. When
exiting the loop STACK-LEVEL < [, issue a directed read
(DBGET MODE 4) to reestablish currency in the PART-
MASTER. before the next serial read,

BIBLIOGRAPHY
Berquist. Rick. “Optomizing IMAGE: An Introduction.™ Proceedings of

the HPSUG 1980 San Josc Meeting.

Codd. E. F. "Relational Database. A Practical Foundation for Productiv-
i CACM (February 1982).

Date. C.J. An Inrroduction ro Databave Svsrems. Third Edition.

Green. Robert. “Overview of Optomizing (On-line and Batch).” Proceedings
of the HPIUG 1982 San Antonio Conference.

Kiefer. Karl H. ~Database Design. Polishing vour IMAGE." Proceedings of
the HPIU'G 1981 Orlando Conference.

Kroenke. David. Darabase Processing. Second Edition.

Matheson. Wendy. "IMAGE 3000: Designing for Performance and Main-
tainability.” Proceedings of the HPIUG 1983 Montreal Conference,

Rego. Alfredo. “Database Therapy: A Practitioner’s Experience.” Proceed-
ings of the 1981 Orlando Conference.

Thomas, Ray. “Entity Relationship Analvsis.™ Proceedings of the HPIUG
1953 Montreal Conference.

JOURNAJ,

Of THE MP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

Implementation of Control Structures in FORTRAN/3000

James P. Schwar

Lafayette College
Easton, Pennsylvania

RECOGNIZED STRUCTURES
The four recognized control structures available for writing
structured codes are the:

e I[FTHENELSE
e DOUNTII

e DOWHILE

e CASE.

In FORTRAN /3000 these control structures can he imple-
mented using the logical TF. unconditional GO TO. DO loop.
and the computed GO TO.

The IFTHENEILSE is of the torm 11 condition THEN
true statements F1LSFE false statements. where condition is a
logical expression. This control structure. as shownin Figure
I. represents a simple decision. In FORTRAN 3000, the
IFTHENELSE becomes
1F(.NOT.conditiomyGO TO S|
true statements
GO TOS2
St false statements
S2 CONTINUE

Consider. for example. the calculation of the real roots of

F(X)=A*X**2+B*X+(=0 for any A.B.C. The decision to be
made is 1F B*B-4.0*A*C>=0 THEN calculate and output
the real roots ELSE output ‘not two real roots™
PAGE 0001 HHPR2T02B.01.03 FOR TR AN 3000
SHEWI ETT-PACKARD €O 1Us0
C ROOTS OF THE QUADRATIC EQUATION
DATA A.B.C 1.0.3.0.2.0
DISCR=B*B-4.0*A*C
¢ BLEGINIFTHENITSE
IFCNOT.DISCR.GE.O.OYGO TO 10
ROOTI=(-B+SQRT(DISCRY) (2.0%A)
ROOT2=(-B-SQRT(DISCR)N {2.0*A)
WRITE(6.*)REAL ROOTS ARE . ROOTI . ROOT2
GO TO 20
10 WRITE(6.X)NOT TWO RFAL ROOTS’
CONTINUE
C END IFTHENELSE

STOP
END

PROGRAM UNIT MAIN" COMPILED

* %k k kst & ok

SLLOBAL STATISTICS
NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME 0:00:01
TOTAL LLAPSED TIME 0:00:02

* %k %k % 3k ok R

END OF COMPILE
END OIF PREPARE

REAL ROOTS ARI -1.00000 -2 00000

One alternative implementation would be to replace NO'T.-
DISCR.GE.0.0 with logical expression DISCR.TT.0.0. A
second alternative would be to interchange the position of

END OF PROGRAM

ALTERNATIVE IMPLEMENTATIONS

the true and false statements and use DISCR.GE.0.0 as the
logical expression. Neither alternative matches the tlowchart
logic as well as the implementation that uses the NOT

condition.

The control structure DO statements WHIT Facondi-
tion is true is shown in Figure 2. The FORTRAN 3000
implementation becomes
ST IFOCNOT . conditiom)GO 10 82
statements
GO TOSI
S2 CONTINUE
Consider the caleulation of N!owhere

NEN(N-DIN-2) o)

This calculation proceeds from left o right WL there s
= 1. Given N, the FORTRAN 3000 statements are

D
D

a value

PAGE 0001 HP32102B.01.04 FORTRAN
SHEWLL T I-PACKARD CO. [9K0
C CALCULATION OF N!
DATAN 10!

3000

t

FACTORIAL=1.0
C BEGIN DOWHIILE

10 IFCNOT.N.GT. NGO TO 20
FACTORIAL=FACTORIAI *N
N=N-1
GO TO 10

20 CONTINUE

C END DOWHIIE

WRITE(6*)FACTORIAL IS TFACTORIAL
sTor
END

PROGRAM UNTT MAIN COMPH ED

X % % Xk Xk %k %k Xk

GLOBAL STATISTICS
¥ExE NO LRRORS. NO WARNINGS *xxx
TOTAL COMPILATION TIMLE 0:00:01
TOTAL FLAPSED TIME 0:00:02
END OI' COMPIILE
END OF PREPARE
FACTORIAL IS 362880F+07
END OF PROGRAM

I'his code vields | for N<=],

The control structure DO statements UNTIL a condi-
ion is true is shown in Figure 3. In FORTRAN 3000 this

Fontrol structure becomes

S1 statements
[F(.NOT .condition)GO TO S|

and the preceding factorial calculation becomes

}

PAGL 0001 HP32102B.01.04 FORTR AN 2000

THEWILTTT-PACKARD CO. 1950

C CAL.CULATION OF N!
DATA N 10
FACTORIAL=1.0

C BEGIN DOUNTIL

10 FACTORIAT=FACTORIAI*N
N=N-1
IFCNOT.N.LE. HGO TO 10
C END DOUNTIL
WRITEO*)FACTORIAT ISST'ACTORIAL
STOP
END

PROGRAM UNIT MAIN"COMPII ED

GLOBAL STATISTICS
FEENO FRRORS. NO WARNINGS *x*+
TOTAL COMPILATION TIMUV 0:00:01
FTOTAL E1 APSTD TIMI 0:00:02

& ok ok K EEET]

FND OF COMPILE
I'ND OF PRIFPARF

17

FACTORIAL IS

Of THE HP 3000 INTERNATIONAL

OURMAJ,

USIRS GROUP INCORPORATED

362880E+07

END OF PROGRAM

The DO loop in FORTRAN 3000 which is of the form

DO S counter=initial value. final value. increment

statements
S CONTINUE

also implements the DOUNTIL as shown in Figure 4. The
calculation of N, using the DO loop. becomes

PAGE 0001 HE32102B.01.04 FOR TR AN 3000
SHEWTETT-PACKARD CO. |95

C

CALCULATION OF N!
DATA N 10
FACTORIAL=I.0

DO 10 1=N.2.-1
FACTORIAL=FACTORITAL.*I

10 CONTINUE

WRITE(6*)FACTORIAL IS FACTORIAL
STOP
END

PROGRAM UNIT MAIN' COMPILED

k %k %k

T T T

GLOBAL STATISTICS

%% NO ERRORS. NO WARNINGS **xx
TOTAL COMPILATION TIME 0:00:01

TOTAL ELAPSED TIME

0:00:03

END OF COMPILE
END OF PREPARE

FACTORIAL IS

362880E+07

END OF PROGRAM

The DOUNTIL requires that 0! be treated as a special case.

MULTIPLE PATHS

The CASE structure. as shown in Figure 5, offers multiple
paths. The selected path is based on the value assigned to an
integer variable. As many paths as needed can be specified.
Itis common practice to assume that when the integer varia-

ble is outside its allowable range

5.

e.g.. one to four for Figure
the CASE structure is ignored. The computed GOTO

can be used to implement the CASE structure, as illustrated
by the following FORTRAN code:

C
C

JEINTEGER VARIABILE
JIS PREVIOUSLY DEFINED
GO TO (10.20.30.40).

10 [~tatements]

GO TO 50

20 [statements]

GO TO S0

30 [statements]

OFf THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

JOURNA

GO TO 50
40 [statements]
50 CONTINUE

CONCLUSION

In conclusion, it should be noted that these implementaticns
of control structures are similar to those output from the
Relational FORTRAN preprocessor for the HP 3000.

18

REFERENCES

FORTRAN 3000 Reference Manual. Hewlett-Packard Company (1977).

Schwar. James P.and Charles | Best. Applicd FORTRAN for Enginecring
arnd Science. SRA(1982).

Sehwar, James ' and Charles 1 Best, “Fortran 3000 and Forran 770 A

Comparison.” Journal

1980 pp. [4-13

G P General Stsiems Usees Group (Wintes

?3

I ey S

J Of THE HP 3000 INTERNATIONAL L
USERS GROUP, INCORPORATED

FALSE

TRUE ;
CONDITION
i]
FALSE TRUE
STATEMENTS STATEMENTS
Figure 1. IFTHENELSE Control Structure
STATEMENTS
TRUE
CONDITION STATEMENTS
FALSE
CONDITION
FALSE

Figure 2. DOWHILE Control Structure

19

Figure 3. DOUNTIL Conirol Structure

JOURNAL

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

/

)

INITIALIZE = STATEMENTS
COUNTER = INITIAL VALUE
|
k\ f » STATEMENTS
1
|
|
!
STATEMENTS |
:s
D
1
INCREMENT 3
COUNTER = i
COUNTER + INCREMENT ;
i STATEMENTS [——
l
FALSE
CONDITION i 1
1S COUNTER > FINAL VALUE ;
(INCREMENT POSITIVE) l -
w - STATEMENTS
1S COUNTER < FINAL VALUE \ '
(INCREMENT NEGATIVE)
TRUE
Y
Figure 4. DO Loop Figure 5. FORTRAN CASE Structure

20

OF THE HP 1000 INTERNATIONAL
USERS GROUP INCORPORATED

JOURNAJ,

MPE Disc Cache: In Perspective

John R. Busch
Alan J. Kondoff

Hewlett-Packard Corporation
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California

ABSTRACT

MPE Disc Caching is a major new performance product for
the HP 3000 family of computers. MPFE Disc Caching effec-
tively utilizes the excess main memory and processor capacity
of the high-end HP 3000 family members to eliminate a large
portion of the disc access delavs encountered in an uncached
svstem. With disc caching. disc data is potentially available
at main memory rather than disc with a probability that

nereases with main memory sive. The MPE dise cache
‘Csigners here present an overview of the purpose of disc
caching. its design approach. its advantages over the alterna-
ves.and its irnpact on the system price performance of the
HP 3000 family.

WHY DISC CACHING?

A storage hierarchy can provide a cost-cffective svstem
organization for computer svstems. Each successive level of
a storage hierarchy uses lower cost. but correspondingly
slower. memory components. By retaining frequently ac-
cessed code and data in the higher speed memories. the SVS-
tem can operate at speeds close to the access times of the
fastest memories but at costs approaching those of the slow-
est memories. (The price and performance of a computcr
svstem is dominated by the organization and management of
its storage hicrarchy)

Achievable system performance is a direct function of
processor speed and utilization. Processor utilization is
limited primarily by its waiting time caused by misses at
various levels of the storage hierarchy. Thus, for optimal
svstem price performance. the processor speed and the
capacity, speed. and management of the fevels of the sto-age
hicrarchy must be matched. In order to tully utilize the sro-
Cessor capacity. the system must achieve a sufficiently high

“obability of inding data when referenced at the highest
cvels rather than having to go to the lower levels of the
lerarchy.

21

When a low hit ratio at a certain level of the storage
hierarchy is causing low processor utilization (thereby limit-
ing achievable system performance). a number of alternatives
exist to resolve the problem. These include improving the
management policies of the Jevels. increasing the capacity of
the level incurring the low hit rate. speeding up the access
time of the next lower level of the hierarchy, and introducing
a new level into the storage hierarchy. Cost and technology
detcrmine which alternative or combination of alternatives is
optimal.

This paper focuses on the innovative solution to the
main memory disc bottleneck that MPE Disc Caching pro-
vides for the HP 3000 computer family.

The levels of the storage hierarchies of HP 3000 com-
puter systems (Hodor and Woodward 1982) range from:
l. processor registers. to
2. microcode store. to
3. processor cache. to
main memory, to

[N

discs, and to
tapes.

>

Each of these levels uses memory components that have a
significantly lower cost-per-byvte but a significantly longer
access time.

The higher-end HP 3000 svstems currently suffer from
low processor utilization in some databasc and disc | O
intensive installations. This negatively impacts the growth
capability for customers. The low processor utilization is due
to processor idling while misses at the main memory level are
being resolved from disc storage. Main memory capacities
bevond a few megabyies mayv provide limited incremental
improvement,

The HP 3000 R&D lab tcams have been working to
resolve this imbalance and propose MPE Disc Caching as
the solution. MPE Disc Caching optimally exploits current
cost and technology tradeoffs to eliminate the imbalance.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

OF THE WP 3000 INTERNATIONAL
USERS GROUP, INCORPORATEO

JOURNAJ,

/

WHAT IS MPE DISC CACHING?

MPE Disc Caching is an optional MPE subsystem that
manages retrieval and replacement of disc “domains™ or
regions in excess main memory. It locates. moves. and replac-
es disc domains in main memory so that a significant portion
of the references to disc storage can be resolved without
incurring physical disc access delays.

The MPE Disc Caching policies are fully integrated
with the MPE kernel. file svstem. and 1 O svstem. This
allows system performance to be optimized based on current
resource availability and workload demand.

Ancillary to MPE Disc Caching, there is a set of exter-
nal controls. measurement. and simulation tools to allow
users to manage and predict the operation of caching on
their systems. Operator commands are available to enable or
disable caching on a device basis, and to display gencral
caching statistics for a device. Measurement tools have been
enhanced to display relevant disc cachc usage and perfor-
mance statistics. A special simulation tool has been deve-
loped. which analyzes disc access traces from HP 3000 svs-
tems and produces disc cache performance statistics for spee-
ified cache memory sizes. With this tool. main memory
requirements to efficiently support disc caching can be pre-
dicted for existing HP 3000 installations.

MPE DISC CACHE DESIGN APPROACH

The MPE kernel resource management mechanisms and
strategies (Busch 1982) provide an efficient. integrated
approach to resource management. The MPE disc cache
mechanisms and strategics arc integrated with those of the
kernel. and they exploit the file system’s knowledge of file
structure and access method to enhance prefetch and replace-
ment decisions for disc domains. Microcode assist is exploit-
ed to rapidly locate cached domains in main memory.

The kernet’s main memory ptacement and replacement
mechanisms are extended to handle cached disc domains in
the same manner as scgments. Thus, cached disc domains
can be of variable size. fetched in parallel with other segments
or cached disc domains. garbage collected. and replaced in
an integrated manner with stacks. data segments. and code
segments. The relative allocation of main memory between
stack. data. code. and cached disc domain objects Is entirely
dynamic. responding to the workload's current requirements
and current memory avatlability.

When a request is made to access disc in formation. the
list of currently cached disc domains of the specified device 15
searched using the /Zinked list search instruction. It the
requested dise domain is present in main memory. the data is
moved between the process’s data arca and the cached copy
of the requested disc domain. The process will continuce exe-
cuting without an interruption or process switeh.

22

If the access request is a write. and there is currently
write pending against the specified disc domain, the process 4
request is queued until the pending write is posted to disc.
the disc domain to be written is not currently cached. an
available region of memory is obtained which is used to map
the corresponding disc image no fetch of the disc
domain to be written is required. When the move cifecting
the write takes place from the process’s data arca to the
cached image of the disc. a post to the disc is initiated. Only
the portion of the cached disc image that is modified by the
write is posted. After the move to the disc image is performed

1.c..

and the post to disc is initiated. the writing process is aflowed
to continue running without having to wait for the physical
post update to complete. Dise integrity is insured within the
operating svstem and subsystems through serial posting on
global basis ol writes with posting order constraints. At the
user level, wait-for-post can be specified on a file busis in
place of the default no-wait-for-post.

When a request is made to read data that is not cur-
rently cached. the feteh strategy uses knowledge of the tile
blocking. extent structure. access method. and current mem-
orv loading to select the optimal size of dise domain 1o be
fetched into memory. The fetch of the dise domain is initiated
through the memory manager on the current process’s slack
without a process switch. The feteh is performed moan
unblocked manner so that the requesting process or anothy
process can run in parallel with the cache feteh from dise.

When a process completes referencing a cached d1¥
domain in sequential mode. the domain s flushed imme-
diately from main memory since it won’t be needed again. In
this way. memory utilization is improved over that achievable
with the kernel's approximate least recently used (LR
replacement algonthm.

With these mechanisms and strategies, MPE - Dise
Caching significantly reduces the traffic between the miin
memory and sccondary dise storage and significantly reduces
delavs to read or write dise information. 1t does o mn
manner that is superior to its alternatives when evaluated by
cost. reliabilitv. and performance measures. The advantages
over its alternatives are discussed in the following section.
followed by a discussion of its impact on HP 3000 system
price performance.

ADVANTAGES OVER ALTERNATIVES

There are several alternatives ta MPE Dise Caching. which
could help address the high tratlic rate and long delavs
hetween main and secondary dise storage on HP 3000 -
tems. Software alternatives focus on providing localized
caching on a subsystem. file. or application basis. Hardw d%
alternatives focus on reducing access time to dise storage &3
increasing the number of concurrent paths to dise storage

The software alternatives are all localized and unre-
onsive to current memory loading conditions. The am ount
of memory devoted to the caching of a specific file or subsvs-
tem would likely be either excessive or insufficient al any
given moment. depending on the current memory availability
and the current workload demand and priority structure.

Access times can be improved by speeding up the discs,
introducing a new level in the storage hierarchy between
semiconductor main memory and moving head devices, or
caching the discs with a peripheral cache. Access capacity
improvements can be accomplished by adding more parallel
paths to secondary store with more discs. controllers. and
channels.

Speeding up discs involves technology limitations and
tradeoffs between performance. cost, and reliability, Access
time improvements that compare with the order of méagni-
tude improvement provided with MPI Dise Caching are
unlikely at any cost. even with head-per-track approaches.

Introducing a new level in the storage hierarchv that
exploits bubbles or CCNx us 2 cap-Tilling technolegy has not
proven to be cost effective when compared with cxploiting
high density semiconductor memors cehnology invery large
main memories.

Q A peripheral disc cache (Hugershofer and Shulty 1982
rastins 1982) can be built into the controller or disc or can
a separate system component that front-ends a selected
Subset of the disc subsystem. Therc are cost. performance,
and reliability trade-offs involved among each of rhese peri-
pheral disc cache architecture alternatives. MPE global disc
caching in the SPUs (system processor unit) is superior 1o
the hest achievable cache architccture by all threc measures.

Evaluated with respect to cost. a peripheral cache
requires additional power. cooling. cabinetry. and electron-
ies. as well as the caching memory that is required for disc
caching in both peripherals and main memory,

Evaluated with respect to reliability, the MPE disc
cache intreduces no new hardware components into the SVS-
tem. The reliability is identical to the uncached svstem,
whercas any of the peripheral cache architectures necessarily
degradc system reliability due to their introduction of hard-
ware components. The software firmware complexity of the
two alternatives is roughly the same. so reliability degrada-
tion due to cache management is comparable. Since the MPE
Disc Caching is built into MPE. it has the potential to evolve
toward improving system reliability (e.g., automatic extent
sparing on write failures). Also. the posting strategy of rhe
peripheral cache is not integrated with the system posting
strategy so that a consistent level of integrity is not

larantced.

Evaluated with respect to performance. the MPE disc
‘che has clear advantages in access time, access rate, and

23

OFf THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

JOURNA

-—

cache memory utilization. Access to cached disc domains is
provided on the current process’s stack with a combination
of firmware and software. Not even a process switch is
required. The access time is on the order of a very few ms,
which scales with processor speed. Access to a peripheral
cache requires at minimum a trip through the 1/0 software
and interrupt system, a process switch, plus the cache access
time of the peripheral cache.

Achievable cache access rate of the main memory cache
is roughly the inverse of the cache access time (several
hundred accesses per second. scaling with processor speed).
This rate is achievable because the main memory cache is a
parallel server. When one process encounters a miss on cache,
the processor can be applied to another process that can
access the cache concurrently with the resolution of cache
faults of other processes. This level of parallelism would be
very difficult to achieve in any of the peripheral cache archi-
tectures. Aiso. the best case access of any peripheral cache
architecture s several times that of the main memory cache.
Therefore. even if full parallelism were achievable in a peri-
pheral cache. the best achievable access rate can only bhe a
small fraction of thit achievable with the main mernory cache
approach.

Cache memory utilization of global SPU caching inte-
grated with the MPE kernel is superior due to several factors.
The amount of cache memory applied to a cached device is
responsive to the current utilization of the device. The size of
a prefetched dise domain is tailored to the structure of the
data (c.g.. the cache mechanisms fetch extents instead of
fetching tracks that contain unrelated data or only pieces of
the required extent). The replacement policy exploits operat-
ing system knowledge of access patterns (c.g., the policy
flushes a cached dise domain from the cache memory after
sequential reference and on file purging).

The traditional way of addressing the dise bottleneck
on a disc-bound system has heen to increase disc access
capacity by adding more dises. controllers, and channels,
This approach is very expensive. and its improvement in
secondary store access time and access capacitv cannot match
that provided by MPE Disc Caching.

IMPACT ON HP 3000 FAMILY SYSTEM
PRICE AND PERFORMANCE

MPE Disc Caching provides a significant improvement in
HP 3000 family system price performance for a large class
of workloads. With the higher-end systems and a large class
of HP 3000 application environments, MPE Disc Caching
effectively reduces the system cost required to achieve a given
performance level. It also significantly increases the system
performance. which is achievable for a given cost.

MPE Disc Caching does introduce increments in sys-
tem cost due to the expense of the optional software product

©F THE HP 3000 INTERNATIONAL
USERS GROUP INCORPORATED

TOURNAJ,

and additional main memory for caching. However. these
increases are more than offset by the reduction in system
cost due to the ability to exploit the very attractive $- Mbyte
advantage of HP’s large capacity discs without suffering a
significant performance disadvantage.

In HP 3000 systems without disc caching. exploiting
the roughly fourfold $:Mbyte advantage of the 793X discs
over the 792X discs comes at a signilicant performance cost.
This is due to the effective fourfold reduction in disc access
capacity caused by the reduction in concurrent disc servers.
Since the disc subsystem is utilized at a much lower rate with
MPE Disc Caching. this reduction in disc access capacity
has a limited impact on system performance. Second-order
cost impacts are also achieved. in that disc maintenance costs
are reduced due to fewer drives and lower utilization of the
drives.

Achievable system performance [or installations with
eXCess Processor capacity is significantly higher with MPE
Disc Caching than that with uncached configurations. Sys-
tem response times are quicker duc to reduced queucing
delays. and service times for the resources required to com-
plete transactions. Disc queuc lengths and frequency of visits

to the dises are reduced 1The queucing delavs and holdiog

times of svstem and application locks are signtiie
reduced. since the dise delay components of the holding t

are reduced. Since these delavs dominate the respomse iy
in uncached svstems for many HEP 3000 workload~. the
impact on system response time due to disc caching can he
significant. System throughput i tmproved due toothe
reduced response times and reduced contention {or resour s,

24

As a workload grows, the upgrade to higher perfo
mance family members becomes a very attractive alternati
from a price performance perspective.

CONCLUSIONS

MPE global disc caching in the SPU provides an innovative
solution to overcoming the huge access time gap between
main memory and disc storage. and the long database sema-
phore queucing delays caused by this gap. It provides a solu-
tion that exploits the current cost and performance trade-ofts
of memory and processor technologies. It is superior to the
alternatives when measured by cost. performance. or relia-
bility. MPE disc caching provides significant system price
performance improvements across the HP 3000 family. as
well as an attractive upgrade for existing HP 3000
installations.

REFERENCES

Hodor, Ken Moand Woedward, Makcohm B Hagh Performares Mam
ilo. e

Syatem With Growsh Capubyias Pa-kosred Jorenal 5 e

1987 AR

B .

o

Montooos Cinoce s v

PATURD i b

JOURNA],

OF THE HP 1000 INTERNATIONAL
USERS GROUP INCORPORATED

1P IUG BOARD OF DIRECTORS

Chairman

Phil Hardin

1.vnx Corporation

1400-112th Avenue S.E.. Suite 100
Bellevue. Washington 98004 USA
(206) 451-1998

Vice-Chairman

N. M. (Nick) Demos

Performance Software Group

P. O. Box 1464

Sandv Spring. Marvland 20860 USA
(301)977-1899

Secretary

F. Stephen Gauss

U.S. Naval Observatory

34th & Massachusetts Avenue N.W.
Washington, D.C. 20390 USA
(202) 653-1510

Treasurer
Michael A. Lasley
HMS Computer Svstems
4524 East 67th Street
Tulsa. Oklahoma 74136 USA
118) 496-0992. extension 303
‘andra S. Bristow
&k hambers Cable Com.. Inc.
: 225 Coburg Road
P. O. Box 7009
Fugene, Oregon 97401 USA
(503) 485-5611

Jane A. Copeland

P. O. Box 1749

Beeville. Texas 78102 USA
(512) 287-3328

Ivor Davies

10 Healev Wood Gardens

Brighouse, West Yorkshire HD 63 SQ
United Kingdom

0484-721191

Lloyd D. Davis

University of Tennessee at Chattanooga
Academic Computing Services

Hunter 209C

Chattanooga, Tennessee 37402 USA
(615) 755-4387

ILLana D. Farmery

Cognos

275 Slater Street, 10th Floor
Ottawa. Ontario K1P 5H9 Canada
(613) 237-1440

|
o

Graham K. Lang
[.aboratories RCA Ltd.
Badenerstrasse 569

CH-8048 Zurich, Switzerland
41:1:526350

Jack McAlister

TDC-Texas Group

624 Six Flags Drive
Arlington, Texas 76011 USA
(817) 461-1242

Glen A. Mortensen

Intermountain Technologies. Inc.
1400 Benton Street

P. O. Box 1604

Idaho Falis. Idaho 83403-1604 USA
(208) 523-7255

Ted Varga

Sperry

455 West Center

Bountiful. Utah 84010 USA
(801) 298-5851

Alan Whitney

MIT Haystack Observatory

Route 40

Westford. Massachusetts 01886 USA
(617) 692-4764

HP IUG Executive Director

William M. Crow

HP International Users Group

2570 El Camino Real West. 4th Floor
Mountain View, California 94040 USA
(415) 941-9960

Hewlett-Packard Liaison

Jo Ann Cohn

Hewlett-Packard Company
Svstems Marketing Center

19447 Pruneridge Avenue
Cupertino, California 95014 USA
(408) 725-8111, extension 3006

Journal
HP International Users Group, Inc.
2570 El Camino Real West, Fourth Floor

Mountain View, California 94040
U.S.A.

BULK RATE
U.S. POSTAGE
PAID

PERMIT NO. 382
MOUNTAIN VIEW, CA
and Other Locations

